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Abstract. We determine the wavefundion of an electron in the presence of a transverse 
magnetic field and randomly located delta function impurities in the x-y  plane within the 
subspace of the lowest Landau level. The wavefundion contains as a factor an entire 
function of r = x + i y  which vanishes at all impurity sites. The question of whether such 
states are extended is related to the rate of growth of an entire function in terms of the 
distribution o f  its zeros. For a homogeneous distribution of impurities the corresponding 
Weierstrass product is o f  order 2 and of finite type. This rate of growth can be exactly 
compensated by the Gaussian term due to the presence of the magnetic field such that 
there i s  a critical field beyond which extended states may exist. If  the impurities are located 
on the sites o f  a square lattice, the extended states are given in closed farm in terms of 
the Weierstrars v function. 

In this paper we study electron states in the two-dimensional x-y  plane subject to a 
strong magnetic field and a disordered potential given by a sum of delta function terms 
(referred to as impurities). More specifically, we address the question of whether 
extended states exist whose energy equals the original Landau energy without the 
disordered potential. The relation of this question to the interpretation of the integer 
quantum Hall effect is well known [I]. The occurrence of extended states on the 
Landau levels and localized states between levels results in the step structure of uxy 
and the spike structure of uxx as the magnetic field is varied. The proof of the extended 
and localized nature of the wavefunction is in general indirect. Here we adopt a direct 
approach and formulate some general statements about the nature of the eigenstates. 

The central concept of the present solution is the use of ideas from the theory of 
entire functions. As it turns out, the wavefunction contains as a factor an entire function 
which vanishes on the sites of the impurities. This approach leads to the conclusion 
that the question of whether solutions at the Landau level energies exist is related to 
the growth rate of an  entire function (i.e. its order and its type) whose distribution of 
zeros is given. If the distribution of impurities is uniform, the relevant order of the 
pertinent Weierstrass product is 2 and the type is finite. It is precisely this fortunate 
geometrical property which, when combined with the physical properties of an electron 
in a magnetic field, assures the existence of solutions to the original problem. 
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The Hamiltonian in the Landau gauge A, = By, with magnetic length L = q  
is 

where the potential strengths, U,, are random numbers and (x,,y,) are the random 
locations of impurities arranged in order of increasing distance from the origin. It is 
useful to denote the compiex position oithe impurities as z, = x, + iym. The distribution 
of the impurities in the two-dimensional plane is of crucial importance in what follows. 
Loosely speaking, we require a finite density, some sort of uniformity and a degree of 
symmetry. By a finite density we mean that the number of impurities in a circle of 
radius r, N ( r ) ,  divided by the area of this circle tends to a constant n as 1’00, 

By uniformity we mean the following: Let {a,] be the complex point set in a 
two-dimensional square lattice of length d arranged in order of increasing distance 
from the origin (two points with the same distance are arranged according to their 
polar angle). It is then required that the distance between an impurity z, and its 
correspun~ing iaiiicr poini C’, wiii noi ‘oe large in ;’ne sense ;hai 

where the prime denotes that the origin is excluded from the sum. Finally, by symmetry 
we mean that the function 

is a bounded function of r. It is easily seen that (Z), (3) and (4) are three independent 
conditions. 

The basic question addressed here concerns the asymptotic behaviour of the 
solutions of the Schrodinger equation 

H W x ,  Y )  = E W x ,  Y ) .  (5) 

The eigenfunctions and eigenvalues of Ho are the Landau functions Lk. (x, y )  (-00 < k <: 
CO) and Landau energies E. = (2n + 1)/L2. For each n, the functions Lk.(x, y )  form a 
subspace P. (which also denotes the projection operator on that space). If the magnetic 
fie!d is sufficiently strong, a projection onto a sinsle Landau level constitutes a 
reasonable approximation. The problem then becomes essentially one-dimensional 
and the difficulties related to the presence of delta function interactions in D >  1 are 
eliminated. We then focus our attention on the solution $(x, y )  of the Schrodinger 
equation for the projected Hamiltonian P,HP,. The kinetic energy operator is replaced 
by the constant POHOP,= Eo while the potential energy PoVP, now becomes a non-local 
operator whose configuration space representation is ( x y ! P ~  VP&’y’): 

J 

The precise form of the kernel (xylP,VPo~x‘y’) is not given here since instead of (6) 
we study the analogous equation in (pseudo-) momentum space where the form Of 
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the integral kernel is given explicitly in (10) below. By performing the projection, the 
problem becomes essentially one-dimensional. The transformation of wavefunctions 
and operators to momentum space is carried out in terms ofthe n = 0 Landau functions? 

e 
Thcs, if $(x, y !  is !he so!.tio!? of !6), the- 

f ( k )  = [ &(x, y ) $ ( ~ ,  Y) dx dy 

is a solution of 

u ( k , k ’ ) f ( k ’ ) d k ’ = ( E - E , ) f ( k ) .  

The momentum space representation of the potential is given explicity by 
r 

This is an infinite sum (over impurities) of separable terms with ‘form factors’ gm(k) 
given by 

( i i j  

If the solution f ( k )  of the integral equation (9) is known, then the wavefunction in 
configuration space is recovered by applying the inverse Fourier transform. Hence, 

=exp -7 exp[-ikz-f(kL)’]f(k) dk  (12) ( 2w 
where in the least term we anticipate the central role of the complex variable z = x + iy. 

One may wonder why we use both configuration and momentum space representa- 
tions. i h e  reason is that the solution of the Schrodinger equation is simpier in 
momentum space where a one-dimensional integral equation (9) results. Yet, test of 
localization or extendedness is simpler in configuration space. Note that u(k,  k’) is 
non-local (a local integral operator in momentum space depends on k and k’ only 
through k - k‘), Thus, it is reasonable to expect the existence of extended states even 
though a one-dimensional problem with a random potential is involved since Anderson 
iocaiizaiion in I D  periains io i o i ~ l  poieiiiiais. 

i Throughout this paper, configuration space variables x, y ,  2,. . .have dimension of length while momentum 
space variables k, 9.. . . have dimension of inverse length. Functions in configuration apace have dimensions 
of invcne square root of length, while functions in momentum space have dimensions of length. The entire 
function F ( r )  (see Eq. (13)) is dimensionless. All integrals are from -m to +m. 

f .  
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The remainder of this paper concerns the solution of equation (9) for E = E, ,  namely 

m 2 

v,,,g,(k) exp( -5) I exp[-ik'z, -f(k'L)2]/(k') dk'=O. (13) 
, = I  

If we find a non-trivial function f ( k )  such that 
0 

exp[-ikz, -i(kL)2]/(k) d k = O  (14) 

for all m, this function obviously satisfies (13). Conversely, if (13) holds for all real k 
and for a random set of impurity strengths {U,,,} with each U, f 0, we would expect 
the validity of (14). In this sense (13) and (14) are equivalent. 

We are thus led to an orthogonality problem of a complex function f(k) of a real 
variable k, to the set of exponentials {e-ik'-} multiplied with Gaussian weight e--:'xL12. 
The following question arises: Under what conditions is the set of functions 
on the sequence {z,,,) multiplied with Gaussian weight (over-) complete? For 
a finite interval (OS k s K),  this problem has a long historyt. In this case the Gaussian 
weight is not needed to assure the convergence of the integrals in (13) and (14). For 
the infinite interval, the Gaussian weight is necessary, and the problem is characterized 
by two length scales: L and d. Notice that the existence of a solution/(k) in the sense 
described above is dependent neither on the magnitudes nor on the signs of the strengths 
{U,,,} as long as U, ZO. This striking result [3] is true only when the solution of the 
original problem is restricted to the Landau energies. On the other hand, the location 
of impurities and their density is of crucial importance. 

As noted [Z], orthogonality to a set of exponential functions is related to the theory 
of entire functions. Suppose we have a solution f(k) in hand. We can define a function 
F ( z )  of a complex variable z: 

I 

F ( z ) =  exp[-ik~-f(kL)~]/(k) dk. (15) 

We limit ourselves to a class of functions f ( k )  for which the integral is uniformly 
convergent in each disk IzI < R. Then (i) F ( z )  is an entire function of z. (ii) Equation 
(14), implies 

J 

F(z,,,) = exp[-ikz, -f(kL)']f(k) dk  = O  (16) J 
i.e. F ( z )  vanishes on the set of impurities. (iii) If we now limit equation (15) to z = x, 
we see that F(x)  is the Fourier transform of e-:'kL'if(k). Hence 1 / 2 ~  1:- e'"F(x) d x  
exists for all k, except possibly for a countable number of points, (we do not exclude 
the possibility that/(k) includes a sum of delta functions), and/(k) can be constructed 
from F ( x )  by the inverse Fourier transform of (15) when restricted to z = x. 

Our strategy is to start from an entire function F ( z )  such that F (  zm) = 0, and to 
construct /(k) from the given F ( z ) .  This manipulation can be performed by noticing 
that F ( r )  is determined by its restriction to the real axis z = x. 

t For references relaled to the pertinent orthogonality problem and its relation to the theory of entire 
functions, see [2]. 
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We now ask the question, what are the properties of the configuration space 
wavefunction +(x, y) whose momentum space Fourier transform f ( k )  is given by 

m 

f( k) = e:(xL12 j-m e'"F(x) d x  (17) 

where F ( x )  is the restriction to the real axis of an entire function F ( r )  satisfying 
conditions (i)-(ii)? Inspecting equation (12), one finds that in fact + ( x , y )  is related 
directly to F ( r )  through . ,  

+(x,y)=exp ( -7 3 F ( z ) .  (18) 

In other words, the solution of P,HP,$ = E0P& is a Gaussian in y times a function 
F ( z )  with the properties (i)-(iii). Thus, in order to investigate the behaviour of the 
W ~ V C ~ U I ~ L L W L ~  ~ ( 2 ,  y ,  we cunsiruct me eniire function Fjz) .  T i e  properties o i  ihe 
wavefunction in configuration space are then determined by the rate of growth of an 
entire function F ( z )  whose distribution of zeros is given. The following statements 
pertaining to the theory of entire functions are based on results from Boas [4]. 

Our first task is to study the Weierstrass product for the sequence of impurities. 
For some p > 0 we examine the series 

c ..--. :-.. , .,_. ..\ ~ . ~ ~ ~ . ~  _ I ~  

and remember that for our impurity distribution Iz,,, = d f i ;  hence the series converges 
for any p > 2 but diverges for p = 2. According to Boas [5,2.5.2] the convergence 
exponent of the sequence (2,) is p = 2 ,  and according to [5,2.5.4] the genus of the 
sequence is p = 2. By [5 ,2.6.5]  the Weierstrass product of the impurity sequence 
(assuming for simplicity zm # O), 

is an entire function of order p = 2 [5,2.1.1]). Evidently, the Weierstrass product (20)  
must be included as  a factor in the entire function F ( z ) .  To inspect the type of the 
weierstrass product is, 2 . i . j j  we use the iindeioitheorem [5.2.iO.ij: Since W - ( z )  has 
an integer order ( p  = 2 in our case), then the symmetry requirement implies that W ( z )  
has a finite type T. 

Having assured the vanishing of F ( z )  on the impurities, we still have some freedom 
in constructing F ( z )  by multiplying the Weierstrass product W ( z )  with an entire 
function h ( z )  of order at most 2 and finite type T' which has no zeros in the whole 
tio,,,prt.n prarre. .,,"I we may wr,,e 

.. . 

,...~~.._. *L :.. 

$(x ,y)=exp -- F ( z ) = e x p  -7 W ( z ) h ( z )  (21)  ( 2 3  ( 23 
where h ( z )  is an entire function of order < 2  and type T ' < w .  

Can one use the freedom in the choice of h ( z )  in order to control the behaviour 
of $(x> y )  as x and y tend to infinity? We are tempted to conjecture that in some cases, 
the answer to this question is positive, as it is evident in the particular situation where 
the impurities are located on a 21) square lattice of length a (for simplicity set a = I), 
namely z ,  = C l , .  The potential is then 

f !  
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and the disorder is implemented through the strengths U, and not through the positions. 
The Weierstrass product is then 

It has the representation [SI 

e ( z )  = enz2S(z) 

where, in the notation of [5] 7 = 5(1/2) here b is the Weierstrass zeta function, and 
S ( z )  is bounded and oscillatory on the real axis. We choose h ( z )  = exp(-vp2) so that 
our entire function is simply S ( z ) ,  and the wavefunction is 

which is bounded and extended on the real axis. It is also bounded on the imaginary 
axis if S ( z )  blows up on the imaginary axis slower than the Gaussian. This is always 
achieved for small enough L (large enough E )  since the type of S ( z )  is finite. In fact, 
TJ is the type of c + ( z ) ,  and since S(z)=eC"'*c(z) it grows on the imaginary axis at 
most as ez"y'. Hence the condition 1/Lz>47 assures boundedness on the imaginary 
axis and leaves extendedness on the real axis unaffected. Thus, we have established 
the existence of a critical field above which states are extended. Curiously, 7 = n / 2  
and hence the condition 1 f L2 = 4 7  implies a flux unit through an elementary square. 
The value of the critical magnetic field required for delocalization of states on the 
lowest Landau level is then given by B = hc/ea2 .  This point, and a generalization of 
the present result to all Landau levels will he discussed elsewhere [ 6 ] .  

We conclude with several remarks: 
( 1 )  If one moves the positions of any finite number of impurities z,,, + w,, m = 

1,2,. . . , M, then the solution is obtained from that of equation (21) upon multiplying 
it by 

M 2-w, n -. 
m-,  2-2, 

(2) This result shows that extendedness can he determined up to a power. If we 
remove (or add) a finite number of impurities z,, m = 1,2, .  . . , M, we must divide (or 
multiply) our previous solution by the factor 

M 

which affects the behaviour of the solution at infinity up to a finite power M. The 
addition or removal of any finite number of impurities cannot of course change the 
essential physics. 

(3) The extendedness property derived here is independent of gauge. However, if 
one chooses a symmetric gauge then the states are localized, but an infinite degeneracy 
associated with choice of origin exists. Extended states are formed in the symmetric 
gauge as appropriate linear combinations of the degenerate localized states. 

(4) Linear combinations of states from a single Landau level (such as +(x, Y )  in 
(12)) do not carry current. Current results once the system is attached to leads and 
edge states are taken into account [71. 
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